
Quantum Theory



Basics of Quantum Mechanics

- Why Quantum Physics? -

• Classical mechanics (Newton's mechanics) and Maxwell's 
equations (electromagnetics theory) can explain 
MACROSCOPIC phenomena such as the motion of billiard 
balls or rockets.

• Quantum mechanics is used to explain microscopic phenomena 
such as photon-atom scattering and the flow of electrons in a 
semiconductor.

• QUANTUM MECHANICS is a collection of postulates based 
on a huge number of experimental observations.

• The differences between classical and quantum mechanics can 
be understood by examining both

– The classical point of view

– The quantum point of view



Basics of Quantum Mechanics

- Classical Point of View -

• In Newtonian mechanics, the laws are written in terms of 
PARTICLE TRAJECTORIES.  

• A PARTICLE is an indivisible mass point object that has a 
variety of properties that can be measured, which we call 
observables.  The observables specify the state of the particle 
(position and momentum).

• A SYSTEM is a collection of particles, which interact among 
themselves via internal forces, and can also interact with the 
outside world via external forces. The STATE OF A SYSTEM 
is a collection of the states of the particles that comprise the 
system.

• All properties of a particle can be known to infinite precision.

• Conclusions:
– TRAJECTORY  ➔ state descriptor of Newtonian physics, 

– EVOLUTION OF THE STATE ➔ Use Newton's second law

– PRINCIPLE OF CAUSALITY ➔ Two identical systems with the same initial 
conditions, subject to the same measurement will yield the same result.0



Basics of Quantum Mechanics

- Quantum Point of View -

• Quantum particles can act as both particles and waves ➔WAVE-
PARTICLE DUALITY

• Quantum state is a conglomeration of several possible outcomes of 
measurement of physical properties ➔ Quantum mechanics uses 
the language of  PROBABILITY theory  (random chance)

• An observer cannot observe a microscopic system without altering 
some of its properties. Neither one can predict how the state of the 
system will change.

• QUANTIZATION of energy is yet another property of 
"microscopic" particles.



Basics of Quantum Mechanics

- Heisenberg Uncertainty Principle -

• One cannot unambiguously specify the values of 
particle's position and its momentum for a 
microscopic particle, i.e.

• Position and momentum are, therefore, 
considered as incompatible variables.

• The Heisenberg uncertainty principle strikes at 
the very heart of the classical physics => the 
particle trajectory.
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Basics of Quantum Mechanics

- The Correspondence Principle -

When Quantum physics is applied to macroscopic systems, it 

must reduce to the classical physics.  Therefore, the nonclassical 

phenomena, such as uncertainty and duality, must become 

undetectable.  Niels Bohr codified this requirement into his 

Correspondence principle:



Basics of Quantum Mechanics

- Particle-Wave Duality -

• The behavior of a "microscopic" particle is very different from 
that of a classical particle:

– ➔ in some experiments it resembles the behavior of a 
classical wave (not localized in space)

– ➔ in other experiments it behaves as a classical particle 
(localized in space)

• Corpuscular theories of light treat light as though it were 
composed of particles, but can not explain DIFRACTION and 
INTERFERENCE.

• Maxwell's theory of electromagnetic radiation can explain 
these two phenomena, which was the reason why the 
corpuscular theory of light was abandoned.



Basics of Quantum Mechanics

- Particle-Wave Duality -

• Waves as particles:

– Max Plank work on black-body radiation, in which he assumed that the 
molecules of the cavity walls, described using a simple oscillator 
model, can only exchange energy in quantized units.

– 1905 Einstein proposed that the energy in an electromagnetic field is 
not spread out over a spherical wavefront, but instead is localized in 
individual clumbs - quanta.  Each quantum of frequency n travels 
through space with the speed of light, carrying a discrete amount of 
energy  and momentum =photon => used to explain the photoelectric 
effect, later to be confirmed by the x-ray experiments of Compton.

• Particles as waves

– Double-slit experiment, in which instead of using a light source, one 
uses the electron gun.  The electrons are diffracted by the slit and then 
interfere in the region between the diaphragm and the detector.





Basics of Quantum Mechanics

- Blackbody Radiation -

• Known since centuries that when a material is heated, it radiates heat 
and its color depends on its temperature

• Example: heating elements of a stove:

– Dark red: 550ºC

– Bright red: 700ºC

– Then: orange, yellow and finally white (really hot !)

• The emission spectrum depends on the material

• Theoretical description: 

simplifications necessary

Blackbody



Blackbody?

• A material is constantly exchanging heat with its surroundings 
(to remain at a constant temperature):

– It absorbs and emits radiations

– Problem: it can reflect incoming radiations, 
which makes a theoretical description more difficult 

(depending on the environment)

• A blackbody is a perfect absorber:

– Incoming radiation is totally absorbed and none is 
reflected



Blackbody Radiation

• Blackbody = a cavity, such as a metal box with a small hole 
drilled into it.

– Incoming radiations entering the hole keep bouncing 
around inside the box with a negligible change of escaping 
again through the hole  => Absorbed.

– The hole is the perfect absorber, e.g. the blackbody 
Radiation emission does not depend on the material the box is 
made of  => Universal in nature















Phase and Group velocity







Derivation of the Schr¨odinger Wave Equation

In the discussion of the particle in an infinite potential well, it was 

observed that the wave function of a particle of fixed energy E 

could most naturally be written as a linear combination of wave 

functions of the form 

Ψ(x,t) = Aei(kx−ωt)           (1)

representing a wave travelling in the positive x direction, and a 

corresponding wave travelling in the opposite direction, so giving 

rise to a standing wave, this being necessary to satisfy the boundary 

conditions. 

This corresponds intuitively to our classical notion of a particle 

bouncing back and forth between the walls of the potential well, 

which suggests that we adopt the wave function above as being the 

appropriate wave function

The Time Dependent Schr¨odinger Wave Equation 



for a free particle of momentum p = ℏ k and energy E = ℏ ω. With 

this in mind, we 



where Ψ is now the wave function of a particle moving in the presence 

of a potential V (x). 

Even though this equation does not look like the familiar wave equation 

that describes, for instance, waves on a stretched string, it is 

nevertheless referred to as a ‘wave equation’ as it can have solutions 

that represent waves propagating through space. We have seen an 

example of this: the harmonic wave function for a free particle of 

energy E and momentum p, 

i.e. Ψ(x,t) = Ae−i(px−Et) 

is a solution of this equation with, as appropriate for a free particle, V 

(x) = 0. But this equation can have distinctly non-wave-like solutions 

whose form depends, amongst other things, on the nature of the 

potential V (x) experienced by the particle.



We have seen what the wave function looks like for a free particle of 

energy E – one or the other of the harmonic wave functions – and we 

have seen what it looks like for the particle in an infinitely deep 

potential well though we did not obtain that result by solving the 

Schr¨odinger equation. 

But in both cases, the time dependence entered into the wave function 

via a complex exponential factor exp[−iEt/ℏ]. This suggests that to 

‘extract’ this time dependence we guess a solution to the Schr¨odinger 

wave equation of the form Ψ(x,t) = ψ(x)e−iEt/ℏ
i.e. where the space and the time dependence of the complete wave 

function are contained in separate factors. 

The idea now is to see if this guess enables us to derive an equation for 

ψ(x), the spatial part of the wave function. If we substitute this trial 

solution into the Schr¨odinger wave equation, and make use of the 

meaning of partial derivatives, we get:

The Time Independent Schr¨odinger Equation 





We note here that the quantity E, which we have identified as the

energy of the particle, is a free parameter in this equation. In other

words, at no stage has any restriction been placed on the possible

values for E. Thus, if we want to determine the wave function for a

particle with some specific value of E that is moving in the presence

of a potential V (x), all we have to do is to insert this value of E into

the equation with the appropriate V (x), and solve for the

corresponding wave function. In doing so, we find, perhaps not

surprisingly, that for different choices of E we get different solutions

for ψ(x).

We can emphasize this fact by writing ψE(x) as the solution

associated with a particular value of E. But it turns out that it is not

all quite as simple as this. To be physically acceptable, the wave

function ψE(x) must satisfy two conditions, one of which we have

seen before namely that the wave function must be normalizable,

and a second, that the wave function and its derivative must be

continuous.



Together, these two requirements, the first founded in the probability 

interpretation of the wave function, the second in more esoteric 

mathematical necessities which we will not go into here and usually 

only encountered in somewhat artificial problems, lead to a rather 

remarkable property of physical systems described by this equation 

that has enormous physical significance: the quantization of energy.


















